skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wu, Haotian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Kröncke has shown that the Fubini–Study metric is an unstable generalised stationary solution of Ricci flow (Kröncke 2020Commun. Anal. Geom.2835–394). In this paper, we carry out numerical simulations which indicate that Ricci flow solutions originating at unstable perturbations of the Fubini–Study metric develop local singularities modelled by the blowdown soliton discovered in (Feldmanet al2003J. Differ. Geom.65169–209). 
    more » « less
    Free, publicly-accessible full text available June 12, 2026
  2. Let (Mn,g) be a complete simply connectedn-dimensional Riemannian manifold with curvature bounds Sectg≤ κ for κ ≤ 0 and Ricg≥ (n− 1)KgforK≤ 0. We prove that for any bounded domain Ω ⊂Mnwith diameterdand Lipschitz boundary, if Ω* is a geodesic ball in the simply connected space form with constant sectional curvature κ enclosing the same volume as Ω, then σ1(Ω) ≤Cσ1(Ω*), where σ1(Ω) and σ1(Ω*) denote the first nonzero Steklov eigenvalues of Ω and Ω* respectively, andC=C(n, κ,K,d) is an explicit constant. When κ =K, we haveC= 1 and recover the Brock–Weinstock inequality, asserting that geodesic balls uniquely maximize the first nonzero Steklov eigenvalue among domains of the same volume, in Euclidean space and the hyperbolic space. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  3. Abstract We present a numerical study of the local stability of mean curvature flow (MCF) of rotationally symmetric, complete noncompact hypersurfaces with type-II curvature blowup. Our numerical analysis employs a novel overlap method that constructs ‘numerically global’ (i.e., with spatial domain arbitrarily large but finite) flow solutions with initial data covering analytically distinct regions. Our numerical results show that for certain prescribed families of perturbations, there are two classes of initial data that lead to distinct behaviours under MCF. Firstly, there is a ‘near’ class of initial data which lead to the same singular behaviour as an unperturbed solution; in particular, the curvature at the tip of the hypersurface blows up at a type-II rate no slower than ( T − t ) −1 . Secondly, there is a ‘far’ class of initial data which lead to solutions developing a local type-I nondegenerate neckpinch under MCF. These numerical findings further suggest the existence of a ‘critical’ class of initial data which conjecturally lead to MCF of noncompact hypersurfaces forming local type-II degenerate neckpinches with the highest curvature blowup rate strictly slower than ( T − t ) −1 . 
    more » « less
  4. null (Ed.)
    Abstract We study the phenomenon of Type-II curvature blow-up in mean curvature flows of rotationally symmetric noncompact embedded hypersurfaces. Using analytic techniques based on formal matched asymptotics and the construction of upper and lower barrier solutions enveloping formal solutions with prescribed behavior, we show that for each initial hypersurface considered, a mean curvature flow solution exhibits the following behavior near the “vanishing” time T : (1) The highest curvature concentrates at the tip of the hypersurface (an umbilic point), and for each choice of the parameter {\gamma>\frac{1}{2}} , there is a solution with the highest curvature blowing up at the rate {(T-t)^{{-(\gamma+\frac{1}{2})}}} . (2) In a neighborhood of the tip, the solution converges to a translating soliton which is a higher-dimensional analogue of the “Grim Reaper” solution for the curve-shortening flow. (3) Away from the tip, the flow surface approaches a collapsing cylinder at a characteristic rate dependent on the parameter γ. 
    more » « less
  5. Abstract Irradiation increases the yield stress and embrittles light water reactor (LWR) pressure vessel steels. In this study, we demonstrate some of the potential benefits and risks of using machine learning models to predict irradiation hardening extrapolated to low flux, high fluence, extended life conditions. The machine learning training data included the Irradiation Variable for lower flux irradiations up to an intermediate fluence, plus the Belgian Reactor 2 and Advanced Test Reactor 1 for very high flux irradiations, up to very high fluence. Notably, the machine learning model predictions for the high fluence, intermediate flux Advanced Test Reactor 2 irradiations are superior to extrapolations of existing hardening models. The successful extrapolations showed that machine learning models are capable of capturing key intermediate flux effects at high fluence. Similar approaches, applied to expanded databases, could be used to predict hardening in LWRs under life-extension conditions. 
    more » « less